Inverse results for weighted Harborth constants
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Inverse Uniqueness Results for One-dimensional Weighted Dirac Operators
Given a one-dimensional weighted Dirac operator we can define a spectral measure by virtue of singular Weyl–Titchmarsh–Kodaira theory. Using the theory of de Branges spaces we show that the spectral measure uniquely determines the Dirac operator up to a gauge transformation. Our result applies in particular to radial Dirac operators and extends the classical results for Dirac operators with one...
متن کاملSome Results on Weighted Cumulative Entropy
Considering Rao et al. (2004) and Di Crescenzo and Longobardi (2009) studies, Misagh et al. (2011) proposed a weighted information which is based on the cumulative entropy called Weighted Cumulative Entropy (WCE). The above-mentioned model is a Shiftdependent Uncertainty Measure. In this paper, we examine some of the properties of WCE and obtain some bounds for that. In order to ...
متن کاملSearching for Kaprekar's constants: algorithms and results
The number 6174 arises in a semifamous problem in recreational mathematics: take any 4-digit number which uses more than one digit and find the difference between the numbers formed by writing the digits in descending order and ascending order (e.g., starting with 4083 yields 8430− 0348= 8082). Iterate this process using the difference as the new 4-digit number. It was first discovered by the I...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2016
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042116501141